Cerebral blood flow with [15O]water PET studies using an image-derived input function and MR-defined carotid centerlines.

نویسندگان

  • Edward K Fung
  • Richard E Carson
چکیده

Full quantitative analysis of brain PET data requires knowledge of the arterial input function into the brain. Such data are normally acquired by arterial sampling with corrections for delay and dispersion to account for the distant sampling site. Several attempts have been made to extract an image-derived input function (IDIF) directly from the internal carotid arteries that supply the brain and are often visible in brain PET images. We have devised a method of delineating the internal carotids in co-registered magnetic resonance (MR) images using the level-set method and applying the segmentations to PET images using a novel centerline approach. Centerlines of the segmented carotids were modeled as cubic splines and re-registered in PET images summed over the early portion of the scan. Using information from the anatomical center of the vessel should minimize partial volume and spillover effects. Centerline time-activity curves were taken as the mean of the values for points along the centerline interpolated from neighboring voxels. A scale factor correction was derived from calculation of cerebral blood flow (CBF) using gold standard arterial blood measurements. We have applied the method to human subject data from multiple injections of [(15)O]water on the HRRT. The method was assessed by calculating the area under the curve (AUC) of the IDIF and the CBF, and comparing these to values computed using the gold standard arterial input curve. The average ratio of IDIF to arterial AUC (apparent recovery coefficient: aRC) across 9 subjects with multiple (n = 69) injections was 0.49 ± 0.09 at 0-30 s post tracer arrival, 0.45 ± 0.09 at 30-60 s, and 0.46 ± 0.09 at 60-90 s. Gray and white matter CBF values were 61.4 ± 11.0 and 15.6 ± 3.0 mL/min/100 g tissue using sampled blood data. Using IDIF centerlines scaled by the average aRC over each subjects' injections, gray and white matter CBF values were 61.3 ± 13.5 and 15.5 ± 3.4 mL/min/100 g tissue. Using global average aRC values, the means were unchanged, and intersubject variability was noticeably reduced. This MR-based centerline method with local re-registration to [(15)O]water PET yields a consistent IDIF over multiple injections in the same subject, thus permitting the absolute quantification of CBF without arterial input function measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method.

Kinetic analysis of 18F-fluorodeoxyglucose positron emission tomography data requires an accurate knowledge the arterial input function. The gold standard method to measure the arterial input function requires collection of arterial blood samples and is an invasive method. Measuring an image derived input function is a non-invasive alternative but is challenging due to partial volume effects ca...

متن کامل

Image derived input function applied in CBF Studies with [15O]water PET in an integrated MR-PET

Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany To quantify CBF studies using [O]water PET an input function must be provided, e.g. by means of arterial blood sampling. An image derived input function (IDIF) gained from the dynamic PET images may be a non-invasive alternative. The time-activity curve (TAC) of the blood can be obtained from a volume of interest ...

متن کامل

Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic-ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous (15)O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn pi...

متن کامل

[15O]H2O positron emission tomography determination of cerebral blood flow during balloon test occlusion of the internal carotid artery.

PURPOSE To determine the utility of [15O]H2O positron emission tomography (PET) for the quantitative determination of cerebral blood flow in patients undergoing balloon test occlusion of the internal carotid artery. METHODS Twenty-two [15O]H2O PET cerebral blood flow studies were completed on 20 patients for whom temporary or permanent occlusion of the internal carotid artery was being consid...

متن کامل

Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function.

The authors developed and tested a method for the noninvasive quantification of the cerebral metabolic rate for glucose (CMRglc) using positron emission tomography (PET), 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. Dynamic PET data acquired 12 to 48 seconds after rapid tracer injection were summed to identify carotid artery regions of interest (ROIs). The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 58 6  شماره 

صفحات  -

تاریخ انتشار 2013